Acids and Bases

Strong vs. Weak

HNO_{2}

Strong Acids vs. Weak Acids

Strong acids and bases completely ionize

$\xrightarrow{+\mathrm{H}_{2} \mathrm{O}}$

$\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
${ }_{E}^{L}$

$$
0
$$

1 M HCl dissociates completely to give $1 \mathrm{M}_{3} \mathrm{O}^{+}$, or $\mathrm{pH}=\mathrm{O}$ 1 M NaOH dissociates completely to give $1 \mathrm{M} \mathrm{OH}^{-}$, or $\mathrm{pOH}=0$, or $\mathrm{pH}=14$

$1 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ DOES NOT dissociate completely to give $1 \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$ $\mathrm{pH}>0,(\mathrm{pH}$ is about 3$)$
$1 \mathrm{M} \mathrm{NH}_{3}$ DOES NOT dissociates completely to give $1 \mathrm{M} \mathrm{OH}^{-}$, $\mathrm{pOH}>0$, or $\mathrm{pH}<14$ (pH is about 11)

6 Strong Acids

- $\mathrm{HCl}_{(\mathrm{aq})} \rightarrow$ Hydrochloric acid
- $\mathrm{HBr}_{(\mathrm{aq})} \rightarrow$ Hydrobromic acid
- $\mathrm{HI}_{(\mathrm{aq})} \rightarrow$ Hydroiodic acid
- $\mathrm{HNO}_{3(\mathrm{aq})} \rightarrow$ Nitric acid
- $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow$ sulfuric acid
- $\mathrm{HClO}_{4(\mathrm{aq})} \rightarrow$ Perchloric acid

Weak acids

All other acids are weak examples: HF $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
$\mathrm{H}_{3} \mathrm{PO}_{4}$ 筑dible

Strong Bases

X -OH where X is any metal from the 1st or 2nd family (except Be)

Weak Bases

All other hydroxides are nearly insoluble
NH_{3}

Strong vs. Weak, Concentrated. vs. Dilute

Strong Acid:

Strong Acid:

$$
\begin{array}{ccc}
12 & H X & \mathrm{H}_{3} \mathrm{O}^{1}+\mathrm{X}^{-1} \\
5 & +2 & +2 \\
5-2 & +2 \\
E \varnothing & 2 & 2
\end{array}
$$

Weak Acid

$$
\begin{array}{ccc}
I & H X & H_{3} \mathrm{O}^{+1}+\mathrm{X}^{-1} \\
S & -1 & +1 \\
E & 1 & 1
\end{array}
$$

p. 47
pH of Strong Acids

1. 0.5 M HBr
a. Write the hydrolysis reaction and create an ISE table.

$$
\begin{array}{lrr}
& \mathrm{HBr}+\mathrm{H}_{2} \mathrm{O} & \mathrm{H}_{3} \mathrm{O}^{+}+ \\
\mathrm{I} & 0.5 & \\
\mathrm{Sr}-1 \\
\mathrm{~S} & -0.5 & +0.5 \\
\mathrm{E} & 0 & 0.5 \\
& 0.5 & 0.5
\end{array}
$$

b. What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+1}$ ions at the end? $0.5 \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$
c. What is the pH of the solution?

$$
\mathrm{pH}=-\log [0.5]=0.301
$$

2. 0.1 M HCl
a. Write the hydrolysis reaction and create an ISE table.

$$
\begin{array}{lccc}
& \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} & \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+ & \mathrm{Cl}^{-1} \\
\mathrm{I} & 0.1 & & \\
\mathrm{~S} & -0.1 & +0.1 & +0.1 \\
\mathrm{E} & 0 & 0.1 & 0.1
\end{array}
$$

b. What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+1}$ ions at the end?

$$
0.1 \mathrm{M}
$$

c. What is the pH of the solution?

$$
\mathrm{pH}=1
$$

3. 0.001 M HX (strong acid)
a. Write the hydrolysis reaction and create an ISE table.

10.001 S-0.001
E

$$
+0.001+0.001
$$

b. What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+1}$ ions at the end?
0.001 M
c. What is the pH of the solution?

$$
p H=-\log [0.001]=3
$$

Determine the pH of a 0.5 M HF solution. Weak
$\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-1}$
| 0.5
S -x
-X -X
E 0.5-x

$$
\begin{array}{cc}
\mathrm{x} & \mathrm{x} \\
0.018 & 0.018
\end{array}
$$

Ionization Constant, $\mathrm{K}=\frac{\text { products }}{\text { reactants }}$

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.018 \mathrm{M}} \\
\mathrm{pH}=-\log (0.018)=1.74
\end{gathered}
$$

Review:

$$
\begin{aligned}
& \mathrm{pOH}=3.71 \\
& \mathrm{pH}= \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=} \\
& {\left[\mathrm{OH}^{-1}\right]=}
\end{aligned}
$$

Write the hydrolysis reaction of HBr

Write the hydrolysis reaction of NH_{3}.

Review:

$$
\begin{aligned}
& \mathrm{pOH}=3.71 \\
& \mathrm{pH}=10.29 \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=5.13 \times 10^{-11}} \\
& {\left[\mathrm{OH}^{-1}\right]=1.95 \times 10^{-4}} \\
& \quad \mathrm{HBr}
\end{aligned}
$$

Write the hydrolysis reaction of HBr
$\mathrm{HBr}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Br}^{-1}$
$\rightarrow A B$
Write the hydrolysis reaction of NH_{3}.
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+1}+\mathrm{OH}^{-1}$
$B C \quad A$

Another Review:
Write the hydrolysis reaction of 0.1 M HCl and include an ISE table.

What is:
$\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=$
$\left[\mathrm{OH}^{-1}\right]=$
$\mathrm{pOH}=$
$\mathrm{pH}=$
Is this an acidic or alkaline solution?

Another Review:
Write the hydrolysis reaction of 0.1 M HCl and include an ISE table.

$$
\begin{array}{lccr}
& \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} & \longrightarrow & \mathrm{H}_{3} \mathrm{O}^{+}+ \\
\mathrm{I} & \mathrm{Cl}^{-1} \\
\mathrm{~S} & 0.1 \\
\mathrm{~S} & 0.1 & +0.1 & +0.1 \\
\mathrm{E} & 0 & 0.1 & 0.1
\end{array}
$$

What is:
$\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=\mathbf{0 . 1 M}$
$\left[\mathrm{OH}^{-1}\right]=1 \times 10^{-13}$
$\mathrm{pOH}=13$
$\mathrm{pH}=1$
Is this an acidic or alkaline solution? acidic

Another Review:
Write the hydrolysis reaction of 0.015 M HCl and include an ISE table.

What is:
[$\mathrm{H}_{3} \mathrm{O}^{+1}$] $=$
$\left[\mathrm{OH}^{-1}\right]=$
$\mathrm{pOH}=$
$\mathrm{pH}=$
Is this an acidic or alkaline solution?

Another Review:

Write the hydrolysis reaction of 0.015 M HCl and include an ISE table.

$$
\begin{array}{llll}
& \mathrm{HBr}+\mathrm{H}_{2} \mathrm{O} & \longrightarrow & \mathrm{H}_{3} \mathrm{O}^{+}+ \\
\mathrm{O} & \mathrm{Br}^{-1} \\
\mathrm{O} & 0.015 \\
\mathrm{~S} & -0.015 \\
\mathrm{E} & 0 & +0.015 & +0.015 \\
0 & 0.015 & 0.015
\end{array}
$$

What is:
$\left[\mathrm{H}_{3} \mathrm{O}^{+1}\right]=0.015$
$\left[\mathrm{OH}^{-1}\right]=6.67 \mathrm{E}-13$
$\mathrm{pOH}=12.17$
$\mathrm{pH}=1.82$
Is this an acidic or alkaline solution? acidic

